Insights into product and process related challenges of lentiviral vector bioprocessing

Author:

Perry Christopher123,Mujahid Noor1,Takeuchi Yasu23,Rayat Andrea C. M. E.1ORCID

Affiliation:

1. Department of Biochemical Engineering University College London London UK

2. Division of Infection and Immunology University College London London UK

3. Biotherapeutics and Advanced Therapies Scientific Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms Potters Bar UK

Abstract

AbstractLentiviral vectors (LVs) are used in advanced therapies to transduce recipient cells for long term gene expression for therapeutic benefit. The vector is commonly pseudotyped with alternative viral envelope proteins to improve tropism and is selected for enhanced functional titers. However, their impact on manufacturing and the success of individual bioprocessing unit operations is seldom demonstrated. To the best of our knowledge, this is the first study on the processability of different Lentiviral vector pseudotypes. In this work, we compared three envelope proteins commonly pseudotyped with LVs across manufacturing conditions such as temperature and pump flow and across steps common to downstream processing. We have shown impact of filter membrane chemistry on vector recoveries with differing envelopes during clarification and observed complete vector robustness in high shear manufacturing environments using ultra scale‐down technologies. The impact of shear during membrane filtration in a tangential flow filtration‐mimic showed the benefit of employing higher shear rates, than currently used in LV production, to increase vector recovery. Likewise, optimized anion exchange chromatography purification in monolith format was determined. The results contradict a common perception that lentiviral vectors are susceptible to shear or high salt concentration (up to 1.7 M). This highlights the prospects of improving LV recovery by evaluating manufacturing conditions that contribute to vector losses for specific production systems.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3