The uptake of dissolved glucose by juvenile green‐lipped mussels (Perna canaliculus)

Author:

Jordan Andy1ORCID,Skelton Brad1,Mugica Maria1,Jeffs Andrew12

Affiliation:

1. Institute of Marine Science University of Auckland Auckland New Zealand

2. School of Biological Sciences University of Auckland Auckland New Zealand

Abstract

AbstractA major expense in the operation of bivalve nurseries is the culture of high‐quality live microalgae feeds, and efforts to develop effective alternative feeds have had limited success. Juvenile bivalves are known to be able to absorb dissolved nutrients, but this ability has received minimal attention as a route for supplementary feeding. This study assessed the capacity of juvenile green‐lipped mussels (GLMs) (Perna canaliculus) to uptake and assimilate dissolved glucose at five experimental concentrations (i.e. 10 µg mL−1, 100 µg mL−1, 1 mg mL−1, 10 mg mL−1 and 30 mg mL−1) as a supplement to cultured microalgae. Growth and survival of the mussels were measured over 3 weeks. Although all glucose concentrations improved the performance of mussel spat compared to the control, the best performing was a concentration of 1 mg mL−1 of dissolved glucose which enhanced daily spat growth 2.7 times that of the control live microalgal diet without glucose. Survival was high (i.e. >95%) for all treatments except for the highest experimental concentration of glucose, for which a concentration of 30 mg mL−1 resulted in mean mortality of 24%. Mussel spat supplemented with dissolved glucose accumulated up to 30% greater lipid and improved the carbohydrate content per mg g−1 of ash‐free dry weight as much as 3.5 times compared to those in the control treatment, indicating that they were in greater nutritional condition. This demonstration that dissolved glucose can be used to fuel growth by GLM spat at concentrations as low as 10 µg mL−1 suggests that other soluble nutrients may also act as a supplemental feed for cultured juvenile molluscs. Dissolved nutrients have the potential to improve the performance of spat in nursery systems while simultaneously reducing the reliance of cultured microalgae as a sole feed input.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3