Flow resistance law in channels with fully submerged and rigid vegetation

Author:

Nicosia Alessio1,Carollo Francesco G.1,Di Stefano Costanza1,Pasquino Vittorio2,Ferro Vito13ORCID

Affiliation:

1. Department of Agricultural, Food and Forest Sciences University of Palermo Palermo Italy

2. Department of Civil, Architectural and Environmental Engineering University of Naples Federico II Napoli Italy

3. NBFC, National Biodiversity Future Center Palermo Italy

Abstract

AbstractThe estimate of flow resistance in vegetated channels is a challenging topic for programming riparian vegetation management, controlling channel conveyance and flooding propensity, for designing soil bioengineering practices. In this paper, measurements collected by Gualtieri et al. (2018), in a flume where rigid cylinders were set in two arrangements (staggered, aligned) at high submergence ratios (ratio between the water depth and the vegetation height greater than 5), were used to study the effect of rigid submerged vegetation on estimating flow resistance. The theoretical flow resistance equation, obtained by integrating the power flow velocity distribution, was first summarized. Then, this flow resistance equation was calibrated and tested by measurements of Gualtieri et al. (2018). In particular, a relationship between the Γ function of the power velocity distribution, the channel slope, the flow Froude number, and the submergence ratio was established by using the available measurements carried out for the two arrangements with different stem concentrations. The calibration of this relationship was carried out by (i) distinguishing measurements corresponding to different vegetation arrangements (staggered, aligned), (ii) joining all available data, and (iii) using only a scale factor representing the effect of vegetation arrangements. For the cases (ii) and (iii), the analysis demonstrated that the theoretical flow resistance equation allows an accurate estimate of the Darcy–Weisbach friction factor, which is characterized by errors that are always less than 5% and less than or equal to 2.5% for 88% of the investigated cases.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3