In Vitro High-Capacity Assay to Quantify the Clonal Heterogeneity in Trilineage Potential of Mesenchymal Stem Cells Reveals a Complex Hierarchy of Lineage Commitment

Author:

Russell Katie C.12,Phinney Donald G.23,Lacey Michelle R.4,Barrilleaux Bonnie L.12,Meyertholen Kristin E.1,O'Connor Kim C.123

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA

2. Biomedical Sciences Graduate Program,Tulane University, New Orleans, Louisiana, USA

3. Center for Gene Therapy, Tulane University, New Orleans, Louisiana, USA

4. Department of Mathematics, Tulane University, New Orleans, Louisiana, USA

Abstract

Abstract In regenerative medicine, bone marrow is a promising source of mesenchymal stem cells (MSCs) for a broad range of cellular therapies. This research addresses a basic prerequisite to realize the therapeutic potential of MSCs by developing a novel high-capacity assay to quantify the clonal heterogeneity in potency that is inherent to MSC preparations. The assay utilizes a 96-well format to (1) classify MSCs according to colony-forming efficiency as a measure of proliferation capacity and trilineage potential to exhibit adipo-, chondro-, and osteogenesis as a measure of multipotency and (2) preserve a frozen template of MSC clones of known potency for future use. The heterogeneity in trilineage potential of normal bone marrow MSCs is more complex than previously reported: all eight possible categories of trilineage potential were detected. In this study, the average colony-forming efficiency of MSC preparations was 55–62%, and tripotent MSCs accounted for nearly 50% of the colony-forming cells. The multiple phenotypes detected in this study infer a more convoluted hierarchy of lineage commitment than described in the literature. Greater cell amplification, colony-forming efficiency, and colony diameter for tri- versus unipotent clones suggest that MSC proliferation may be a function of potency. CD146 may be a marker of multipotency, with ∼2-fold difference in mean fluorescence intensity between tri- and unipotent clones. The significance of these findings is discussed in the context of the efficacy of MSC therapies. The in vitro assay described herein will likely have numerous applications given the importance of heterogeneity to the therapeutic potential of MSCs.

Funder

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3