Morphology and properties of carbon black‐filled thermoplastic vulcanizate (TPV) composites based on hydrogenated acrylonitrile butadiene rubber and thermoplastic polyester elastomer

Author:

Cui Ziwen1ORCID,Jing Yuanrong2,Liu Lianxu3,Liu Yingjun14,Du Aihua1ORCID

Affiliation:

1. Key Laboratory of Rubber‐Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐Plastics, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China

2. Science and Technology Centre Shandong North Modern Chemistry Industry Co., Ltd Jinan China

3. Manchester Metropolitan Joint Institute Hubei University Wuhan China

4. Key Laboratory of Polymer Processing Engineering, Ministry of Education South China University of Technology Guangzhou China

Abstract

AbstractThe unique morphology of thermoplastic vulcanizates (TPVs) reveals a significant correlation between the microstructure and performance, and the development of high‐performance TPV composites for specialized applications has become a current research priority. This study is devoted to developing heat‐ and oil‐resistant TPV composites filled with carbon black (CB) based on hydrogenated acrylonitrile butadiene rubber (HNBR) and thermoplastic polyester elastomer (TPEE) following the masterbatch procedure of dynamic vulcanization. Herein, it focuses on the effects of CB content on the morphology, filler network structure, and properties of the TPV/CB composites. As observed by morphological studies, CB nanoparticles are interconnected and aggregated to form a dual network structure of rubber and CB particles in the composite. With the increasing CB content, it's demonstrated that dual networks have enhanced and shifted to rigid. Consequently, the hardness, thermal stability, and oil resistance of TPV/CB composites are improved, with a 104% elevation in the stress at 300% strain. The flowability in the molten state, toughness (the elongation at break decreased from 690% to 310%), and elasticity deteriorated by oversized (0.5 ~ 1.2 μm) CB agglomerates and rigid rubber particles. This study gives new insight into the microstructure‐properties relationship of TPVs, offering theoretical guidance for fabricating HNBR‐based TPV composites.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

South China University of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3