Affiliation:
1. School of Mathematical Sciences South China Normal University Guangzhou China
Abstract
AbstractIn this paper, we apply the Anderson acceleration technique to the existing relaxation fixed‐point iteration for solving the multilinear PageRank. In order to reduce computational cost, we further consider the periodical version of the Anderson acceleration. The convergence of the proposed algorithms is discussed. Numerical experiments on synthetic and real‐world datasets are performed to demonstrate the advantages of the proposed algorithms over the relaxation fixed‐point iteration and the extrapolated shifted fixed‐point method. In particular, we give a strategy for choosing the quasi‐optimal parameters of the associated algorithms when they are applied to solve the test problems with different sizes but the same structure.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献