Therapeutic potential of dihydroartemisinin in mitigating radiation‐induced lung injury: Inhibition of ferroptosis through Nrf2/HO‐1 pathways in mice

Author:

Ning Xin1,Zhao Weidong1,Wu Qiaoyuan1,Wang Cailan1,Liang Shixiong1ORCID

Affiliation:

1. Department of Radiation Oncology Guangxi Medical University Cancer Hospital Nanning Guangxi Zhuang Autonomous Region China

Abstract

AbstractBackgroundRadiation‐induced lung injury (RILI) is a common consequence of thoracic radiation therapy that lacks effective preventative and treatment strategies. Dihydroartemisinin (DHA), a derivative of artemisinin, affects oxidative stress, immunomodulation, and inflammation. It is uncertain whether DHA reduces RILI. In this work, we investigated the specific mechanisms of action of DHA in RILI.MethodsTwenty‐four C57BL/6J mice were randomly divided into four groups of six mice each: Control group, irradiation (IR) group, IR + DHA group, and IR + DHA + Brusatol group. The IR group received no interventions along with radiation treatment. Mice were killed 30 days after the irradiation. Morphologic and pathologic changes in lung tissue were observed with hematoxylin and eosin staining. Detection of hydroxyproline levels for assessing the extent of pulmonary fibrosis. Tumor necrosis factor α (TNF‐α), transforming growth factor‐β (TGF‐β), glutathione peroxidase (GPX4), Nuclear factor erythroid 2‐related factor 2 (Nrf2), and heme oxygenase‐1 (HO‐1) expression in lung tissues were detected. In addition, mitochondrial ultrastructural changes in lung tissues were also observed, and the glutathione (GSH) content in lung tissues was assessed.ResultsDHA attenuated radiation‐induced pathological lung injury and hydroxyproline levels. Additionally, it decreased TNF‐α and TGF‐β after irradiation. DHA may additionally stimulate the Nrf2/HO‐1 pathway. DHA upregulated GPX4 and GSH levels and inhibited cellular ferroptosis. Brusatol reversed the inhibitory effect of DHA on ferroptosis and its protective effect on RILI.ConclusionDHA modulated the Nrf2/HO‐1 pathway to prevent cellular ferroptosis, which reduced RILI. Therefore, DHA could be a potential drug for the treatment of RILI.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3