The emerging roles of circRNAs in traits associated with livestock breeding

Author:

Sun Ping1,Chen Mengjie1,Sooranna Suren R.2ORCID,Shi Deshun1,Liu Qingyou13,Li Hui1ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Animal Science and Technology Guangxi University Nanning China

2. Institute of Reproductive and Developmental Biology Imperial College London London UK

3. Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering Foshan University Foshan China

Abstract

AbstractMany indicators can be used to evaluate the productivity and quality of livestock, such as meat and milk production as well as fat deposition. Meat and milk production are measures of livestock performance, while fat deposition affects the taste and flavor of the meat. The circRNAs, are non‐coding RNAs, that are involved in the regulation of all these three traits. We review the functions and mechanisms of circRNAs in muscle and fat development as well as lactation to provide a theoretical basis for circRNA research in animal husbandry. Various phenotypic changes presented in livestock may be produced by different circRNAs. Our current concern is how to use the roles played by circRNAs to our advantage to produce the best possible livestock. Hence, we describe the advantages and disadvantages of knockout techniques for circRNAs. In addition, we also put forward our thoughts regarding the mechanism and network of circRNAs to provide researchers with novel ideas of how molecular biology can help us advance our goals in animal farming.This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein‐RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein‐RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA‐Protein Complexes

Funder

Natural Science Foundation of Guangxi Province

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3