Effect of heat stress on seed protein quality in mungbean [Vigna radiata (L.) Wilczek]

Author:

Batra Divya1,Dhull Sanju Bala2ORCID,Rani Jyoti3,Meenakshi Meenakshi1,Kumar Yogesh1,Kinabo Joyce4ORCID

Affiliation:

1. Department of Botany Kurukshetra University Kurukshetra Haryana India

2. Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana India

3. Department of Botany Chaudhary Devi Lal University Sirsa Haryana India

4. Department of Food Technology, Nutrition and Consumer Sciences Sokoine University of Agriculture Morogoro Tanzania

Abstract

AbstractAbiotic and biotic stresses impair the productivity of agricultural crops. Among abiotic stresses, the higher temperature (i.e., heat stress) is unfavourable for plant growth and development. In recent years, the mungbean [Vigna radiata (L.) Wilczek] demand has been increasing, which can satisfy human protein requirements. However, its productivity and quality are negatively impacted by heat stress due to climate change. This requires a broadening scope of mungbean adaptation to warmer climates. Hence, the objective of this study was to assess the effects of heat stress on various mungbean genotypes for their seed protein characteristics (total seed protein content, proportion of four protein fractions, and electrophoretic patterns on SDS‐gels). The 13 mungbean genotypes were grown under normal and heat‐stressed conditions by sowing seeds at two different times, that is, the normal sowing time in the last week of March and late sowing in the last week of April in the experimental plots. In late‐sown plants, the total seed proteins decreased by 4.1% to 9.3%. In addition, the relative proportion of glutelins and prolamins increased significantly while globulins and albumins decreased at high temperatures. Moreover, the intensity of polypeptides decreased under high temperatures. In our studies, some polypeptides appeared, and others disappeared in late‐sown genotypes. The disappearance of bands reveals a higher rate of protein degradation than synthesis under heat stress. The detrimental effects of heat stress on seed protein characteristics studied were more prominent in MH 318, IPM 02‐3 and PM‐5 and less noticeable in MH 125, MH 421 and PDM 139 genotypes.

Publisher

Wiley

Subject

Plant Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3