Empowering edge devices: FPGA‐based 16‐bit fixed‐point accelerator with SVD for CNN on 32‐bit memory‐limited systems

Author:

Yanamala Rama Muni Reddy1ORCID,Pullakandam Muralidhar1

Affiliation:

1. Department of ECE National Institute of Technology Warangal Telangana India

Abstract

AbstractConvolutional neural networks (CNNs) are now often used in deep learning and computer vision applications. Its convolutional layer accounts for most calculations and should be computed fast in a local edge device. Field‐programmable gate arrays (FPGAs) have been adequately explored as promising hardware accelerators for CNNs due to their high performance, energy efficiency, and reconfigurability. This paper developed an efficient FPGA‐based 16‐bit fixed‐point hardware accelerator unit for deep learning applications on the 32‐bit low‐memory edge device (PYNQ‐Z2 board). Additionally, singular value decomposition is applied to the fully connected layer for dimensionality reduction of weight parameters. The accelerator unit was designed for all five layers and employed eight processing elements in convolution layers 1 and 2 for parallel computations. In addition, array partitioning, loop unrolling, and pipelining are the techniques used to increase the speed of calculations. The AXI‐Lite interface was also used to communicate between IP and other blocks. Moreover, the design is tested with grayscale image classification on MNIST handwritten digit dataset and color image classification on the Tumor dataset. The experimental results show that the proposed accelerator unit implementation performs faster than the software‐based implementation. Its inference speed is 89.03% more than INTEL 3‐core CPU, 86.12% higher than Haswell 2‐core CPU, and 82.45% more than NVIDIA Tesla K80 GPU. Furthermore, the throughput of the proposed design is 4.33GOP/s, which is better than the conventional CNN accelerator architectures.

Publisher

Wiley

Reference45 articles.

1. HCP: A Flexible CNN Framework for Multi-Label Image Classification

2. Imagenet classification with deep convolutional neural networks;Krizhevsky A;Adv Neural Inf Process Systs,2012

3. Speech Recognition Using Deep Neural Networks: A Systematic Review

4. BojarskiM Del TestaD DworakowskiD et al.End to end learning for self‐driving cars. arXiv preprint arXiv:1604.07316;2016.

5. StriglD KoflerK PodlipnigS.Performance and scalability of GPU‐based convolutional neural networks. In: 2010 18th Euromicro Conference on Parallel Distributed and Network‐Based Processing IEEE;2010:317‐324.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A high‐throughput flexible lossless compression and decompression architecture for color images;International Journal of Circuit Theory and Applications;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3