Physically hybrid Zr(OH)4 + CuO catalyzed selective aniline oxidation: A new Ph‐N˙$$ \dot{\mathbf{N}} $$OH mediated mechanism

Author:

Qin Jiaheng1,Liu Chong2,Zhao Feng1,Fan Tongtong1,Ma Zheng‐Lan1,Ma Jiantai1,Long Yu13ORCID

Affiliation:

1. State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China

2. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou China

3. MOE Frontiers Science Center for Rare Isotopes Lanzhou University Lanzhou China

Abstract

AbstractDeveloping the sustainable and cost‐effective heterogeneous catalytic system for controlling chemoselectivity holds substantial importance in fine organic chemicals. Herein we construct a unique Zr(OH)4 + CuO physically hybrid system for selective oxidation of anilines. Zr(OH)4 alone leads to azoxybenzene formation, and Zr(OH)4 + CuO shifts the reaction favorably toward nitrosobenzene. The proximity study indicates Zr(OH)4 + CuO outperforms its counterparts synthesized through methods like ball‐milling, loading, and coprecipitation, because the closer proximity exhibits stronger chemical interaction, restricting the activity of Zr‐OH hydroxyl sites. Through mechanistic experiments, in situ DRIFT‐IR and DFT calculations, a new Ph‐OH intermediate mechanism is firstly proposed. Two Ph‐OH self‐condensate to form azoxybenzene for only Zr(OH)4, whereas Zr(OH)4 + CuO could promote rapid transformation of Ph‐OH to nitrosobenzene on CuO through a hydrogen transfer process. Moreover, Zr(OH)4 + CuO displays good recyclability and robust scalability. This is the first report demonstrating the utilization of a physically hybrid catalyst to adjust the selectivity of the aniline oxidation reaction.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3