Ionic liquid‐polymeric membranes for CO2 separation: A new perspective on membrane integrity under pressure

Author:

Ferrari Henrique Z.1ORCID,Polesso Bárbara1,Gonzaga João Victor2,Bernard Franciele2,Dias Guilherme1,Einloft Sandra12

Affiliation:

1. Post‐Graduation Program in Materials Engineering and Technology Pontifical Catholic University of Rio Grande do Sul Porto Alegre Brazil

2. School of Technology Pontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil

Abstract

AbstractMembrane‐based CO2 separation is a promising technology compared to traditional processes, presenting advantages such as superior energy efficiency and reduced operational costs. This study investigates the enhancement of CO₂/N₂ separation performance by incorporating ionic liquid [hmim][Tf₂N] into polysulfone membranes. The membranes were produced with 5, 10, and 20 wt% IL, and their permeability was measured at 25°C under pressures of 1 and 4 bar. Stability tests were also conducted. At 1 bar, the membrane with 20 wt% IL exhibited the highest CO₂ permeability of 342.27 Barrer, while the membrane with 5 wt% IL demonstrated the best ideal selectivity for CO₂/N₂ of 27.87. At 4 bar, the membrane with 5 wt% IL showed the highest ideal selectivity for CO₂/N₂ of 40.81, with a CO₂ permeability of 144.26 Barrer. Leaching tests indicated potential integrity loss in ionic liquid composite polymer membranes at high pressures. Specifically, the CO₂ permeability of the PSF‐[hmim][Tf₂N] 5 wt% membrane increased continuously post‐testing due to IL leaching. However, the performance of the membranes remained stable at lower pressures (1 bar). These findings suggest that the produced membranes achieve higher permeability, CO₂/N₂ selectivity, and CO₂ diffusivity, making them suitable for post‐combustion gas separation applications.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3