Assessing code readability in Python programming courses using eye‐tracking

Author:

Segedinac Milan1,Savić Goran1ORCID,Zeljković Ivana1,Slivka Jelena1ORCID,Konjović Zora2

Affiliation:

1. Faculty of Technical Sciences University of Novi Sad Novi Sad Serbia

2. Singidunum University Belgrade Serbia

Abstract

AbstractCode readability models are typically based on the code's structural and textual features, considering code readability as an objective category. However, readability is inherently subjective and dependent on the knowledge and experience of the reader analyzing the code. This paper assesses the readability of Python code statements commonly used in undergraduate programming courses. Our readability model is based on tracking the reader's eye movement during the while‐read phase. It uses machine learning (ML) techniques and relies on a novel set of features—observational features—that capture how the readers read the code. We experimented by tracking the eye movement of 90 undergraduate students while assessing the readability of 48 Python code snippets. We trained an ML model that predicts readability based on the collected observational data and the code snippet's structural and textual features. In our experiments, the XGBoost classifier trained using observational features exclusively achieved the best results (0.85 F‐measure). Using correlation analysis, we identified Python statements most affecting readability for undergraduate students and proposed implications for teaching Python programming. In line with findings for Java language, we found that constructs related to the code's size and complexity hurt the code's readability. Numerous comments also hindered readability, potentially due to their association with less readable code. Some Python‐specific statements (list comprehension, lambda function, and dictionary comprehension) harmed code readability, even though they were part of the curriculum. Tracking students' gaze indicated some additional factors, most notably nonlinearity introduced by if, for, while, try, and function call statements.

Publisher

Wiley

Subject

General Engineering,Education,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Replication of a Study about the Impact of Method Chaining and Comments on Readability and Comprehension;2024 4th International Conference on Code Quality (ICCQ);2024-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3