Piezoelectric properties of PVDF‐TrFE/BaTiO3 composite foams with different contents of TrFE units

Author:

Kubin Mateja1,Makreski Petre2ORCID,Zanoni Michele3,Selleri Giacomo4,Gasperini Leonardo4,Fabiani Davide45,Gualandi Chiara35,Bužarovska Aleksandra1ORCID

Affiliation:

1. Faculty of Technology and Metallurgy Ss. Cyril and Methodius University Skopje North Macedonia

2. Faculty of Natural Sciences and Mathematics Institute of Chemistry, Ss. Cyril and Methodius University Skopje North Macedonia

3. Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna University of Bologna Bologna Italy

4. Department of Electrical, Electronic, and Information Engineering University of Bologna Bologna Italy

5. Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI‐MAM University of Bologna Bologna Italy

Abstract

AbstractPiezoelectric (PE) materials play an important role in the emerging field of micro and wearable electronics. Achieving high PE response is a key feature for their use in energy harvesting and sensing systems. In this study, highly porous lightweight composite foams composed of PVDF‐TrFE (70/30 and 80/20 mol%) and different BaTiO3 content (5, 10, and 20 wt%) are prepared by thermally induced phase separation method. The PE foams were structurally and thermally examined by using Fourier‐transform infrared spectroscopy, x‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis analyses. All composite foams were characterized by high β‐phase content, while the addition of ceramic particles resulted in higher crystallinity and thermal stability of the investigated foams. Two distinct poling methods were employed due to the different molar compositions of the copolymers. The PE response was measured by the PE strain coefficient (d33) and the output current (Ip). The composite foams based on PVDF‐TrFE 70/30 mol% copolymer, having two well‐separated Curie temperatures for the organic and inorganic phases, can be polarized to achieve the contribution of both components to the PE performance, reaching the highest value of −28.3 pC N−1 and 130 nA at 10 Hz for the composite with 20 wt% BaTiO3.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3