Affiliation:
1. Discipline of Medical Imaging Science, Faculty of Medicine and Health University of Sydney Sydney New South Wales Australia
Abstract
AbstractRadiomics is an emerging field that aims to extract and analyse a comprehensive set of quantitative features from medical images. This scoping review is focused on MRI‐based radiomic features for the molecular profiling of breast tumours and the implications of this work for predicting patient outcomes. A thorough systematic literature search and outcome extraction were performed to identify relevant studies published in MEDLINE/PubMed (National Centre for Biotechnology Information), EMBASE and Scopus from 2015 onwards. The following information was retrieved from each article: study purpose, study design, extracted radiomic features, machine learning technique(s), sample size/characteristics, statistical result(s) and implications on patient outcomes. Based on the study purpose, four key themes were identified in the included 63 studies: tumour subtype classification (n = 35), pathologically complete response (pCR) prediction (n = 15), lymph node metastasis (LNM) detection (n = 7) and recurrence rate prediction (n = 6). In all four themes, reported accuracies widely varied among the studies, for example, area under receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to 0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four themes, combining radiomic features with clinical data improved the predictive models. Preliminary results of this study showed radiomics potential to characterise the whole tumour heterogeneity, with clear implications for individual‐targeted treatment. However, radiomics is still in the pre‐clinical phase, currently with an insufficient number of large multicentre studies and those existing studies are often limited by insufficient methodological transparency and standardised workflow. Consequently, the clinical translation of existing studies is currently limited.
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献