Affiliation:
1. LPMCN Laboratory, Faculty of ESCS University of Jijel Jijel Algeria
2. LMe Laghouat University Laghouat Algeria
3. Higher Normal School Laghouat Algeria
Abstract
AbstractPartial storage strategy can save energy and reduce emissions. In this study, analysis of the partial melting process of ice inserted with nanoparticles inside a square enclosure is investigated for thermal energy storage. The lattice Boltzmann method is for melting and heat transfer in the storage unit. The validation demonstrates strong concurrence between the current findings and the experimental data documented in the literature. The analysis is performed for various Rayleigh numbers, nanoparticle volume fractions, and their effect on melting time and energy storage. Two types of nanoparticles are tested that is, copper and alumina. The outcomes indicate that the Rayleigh number and volume fraction of nanoparticles have a significant impact on the phase change process. The nanoparticles addition leads to homogenous and hence expedited melting process including the final stage of the ice melting process which is very slow without nanoparticles. Furthermore, copper nanoparticles are slightly more effective than alumina. Moreover, using 6% copper nanoparticles can reduce the melting time by up to 12.4%.