Optimising brain age estimation through transfer learning: A suite of pre‐trained foundation models for improved performance and generalisability in a clinical setting

Author:

Wood David A.1ORCID,Townend Matthew1,Guilhem Emily2,Kafiabadi Sina2,Hammam Ahmed2,Wei Yiran1,Al Busaidi Ayisha2,Mazumder Asif3,Sasieni Peter1,Barker Gareth J.4,Ourselin Sebastien1,Cole James H.56ORCID,Booth Thomas C.12

Affiliation:

1. School of Biomedical Engineering and Imaging Sciences, Rayne Institute King's College London London UK

2. King's College Hospital NHS Foundation Trust London UK

3. Guy's and St Thomas' NHS Foundation Trust London UK

4. Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience King's College London London UK

5. Dementia Research Centre, Institute of Neurology University College London London UK

6. Centre for Medical Image Computing, Department of Computer Science University College London London UK

Abstract

AbstractEstimated age from brain MRI data has emerged as a promising biomarker of neurological health. However, the absence of large, diverse, and clinically representative training datasets, along with the complexity of managing heterogeneous MRI data, presents significant barriers to the development of accurate and generalisable models appropriate for clinical use. Here, we present a deep learning framework trained on routine clinical data (N up to 18,890, age range 18–96 years). We trained five separate models for accurate brain age prediction (all with mean absolute error ≤4.0 years, R2 ≥ .86) across five different MRI sequences (T2‐weighted, T2‐FLAIR, T1‐weighted, diffusion‐weighted, and gradient‐recalled echo T2*‐weighted). Our trained models offer dual functionality. First, they have the potential to be directly employed on clinical data. Second, they can be used as foundation models for further refinement to accommodate a range of other MRI sequences (and therefore a range of clinical scenarios which employ such sequences). This adaptation process, enabled by transfer learning, proved effective in our study across a range of MRI sequences and scan orientations, including those which differed considerably from the original training datasets. Crucially, our findings suggest that this approach remains viable even with limited data availability (as low as N = 25 for fine‐tuning), thus broadening the application of brain age estimation to more diverse clinical contexts and patient populations. By making these models publicly available, we aim to provide the scientific community with a versatile toolkit, promoting further research in brain age prediction and related areas.

Funder

Wellcome Trust

Engineering and Physical Sciences Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3