A meso‐damage‐based constitutive model for yellow sandstone under dry–wet cycles

Author:

Qin Zhe12,Zhang Runchang12,Mao Weizheng12,Han Jihuan12,Li Zhiwen12,Zhang Sunhao3

Affiliation:

1. College of Civil Engineering and Architecture Shandong University of Science and Technology Qingdao China

2. Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation Shandong University of Science and Technology Qingdao China

3. School of Engineering Nagasaki University Nagasaki Japan

Abstract

AbstractThe mechanical properties of rocks weaken under dry–wet cycles. This weakening may significantly modify the safety reserve of underground caverns or reservoir bank slopes. However, meso‐damage has not been carefully studied based on micromechanical observations and analyses. Therefore, in this study, meso‐damage of a yellow sandstone is investigated and a meso‐damage‐based constitutive model for dry–wet cycles is proposed. First, computed tomography scanning and uniaxial compression tests were conducted on yellow sandstones under different dry–wet cycles. Second, the evolution of rock mesostructures and the damage mechanism subjected to dry–wet cycles were simulated using the discrete element method with Particle Flow Code in 2 Dimensions (PFC2D) software. Third, a constitutive model was proposed based on the meso‐statistical theory and damage mechanics. Finally, this constitutive model was verified with the experimental results to check its prediction capability. It is found that the radius and number of pore throats in the sandstone increase gradually with the number of dry–wet cycles, and the pore structure connectivity is also improved. The contact force of sandstone interparticle cementation decreases approximately linearly and the continuity of the particle contact network is continuously broken. The meso‐deformation and strength parameters show similar declining patterns to the modulus of elasticity and peak strength of the rock sample, respectively. This meso‐damage‐based constitutive model can describe well the rock deformation in the initial pressure density stage and the damage stage under the coupling effect of dry–wet cycles and loads.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3