Grouped machine learning methods for predicting rock mass parameters in a tunnel boring machine‐driven tunnel based on fuzzy C‐means clustering

Author:

Wang Ruirui1ORCID,Ni Yaodong1,Zhang Lingli1,Gao Boyang2

Affiliation:

1. The School of Civil Engineering Shandong Jianzhu University Jinan China

2. Northeastern University Khoury College of Computer Sciences Boston Massachusetts USA

Abstract

AbstractTo guarantee safe and efficient tunneling of a tunnel boring machine (TBM), rapid and accurate judgment of the rock mass condition is essential. Based on fuzzy C‐means clustering, this paper proposes a grouped machine learning method for predicting rock mass parameters. An elaborate data set on field rock mass is collected, which also matches field TBM tunneling. Meanwhile, target stratum samples are divided into several clusters by fuzzy C‐means clustering, and multiple submodels are trained by samples in different clusters with the input of pretreated TBM tunneling data and the output of rock mass parameter data. Each testing sample or newly encountered tunneling condition can be predicted by multiple submodels with the weight of the membership degree of the sample to each cluster. The proposed method has been realized by 100 training samples and verified by 30 testing samples collected from the C1 part of the Pearl Delta water resources allocation project. The average percentage error of uniaxial compressive strength and joint frequency (Jf) of the 30 testing samples predicted by the pure back propagation (BP) neural network is 13.62% and 12.38%, while that predicted by the BP neural network combined with fuzzy C‐means is 7.66% and 6.40%, respectively. In addition, by combining fuzzy C‐means clustering, the prediction accuracies of support vector regression and random forest are also improved to different degrees, which demonstrates that fuzzy C‐means clustering is helpful for improving the prediction accuracy of machine learning and thus has good applicability. Accordingly, the proposed method is valuable for predicting rock mass parameters during TBM tunneling.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3