New physics of supersonic ruptures

Author:

Tarasov Boris G.1

Affiliation:

1. Laboratory of Geomechanics of Highly Stressed Rock and Massives Far Eastern Federal University Vladivostok Russia

Abstract

AbstractUntil recently, it is believed that the rupture speed above the pressure wave is impossible since spontaneously propagating ruptures are driven by the energy released due to the rupture motion, which is transferred through the medium to the rupture tip region at the maximum speed equal to the pressure wave speed. However, the apparent violation of classic theories has been revealed by new experimental results demonstrating supersonic shear ruptures. This paper presents a detailed analysis of the recently discovered shear rupture mechanism (fan hinged), which suggests a new physics of energy supply to the tip of supersonic ruptures. The key element of this mechanism is the fan‐shaped structure of the head of extreme ruptures, which is formed as a result of an intense tensile cracking process with the creation of intercrack slabs that act as hinges between the shearing rupture faces. The fan structure is featured with the following extraordinary properties: extremely low friction approaching zero; amplification of shear stresses above the material strength at low applied shear stresses; creation of a self‐disbalancing stress state causing a spontaneous rupture growth; abnormally high energy release; generation of driving energy directly at the rupture tip which excludes the need to transfer energy through the medium. The fan mechanism operates in intact rocks at stress conditions corresponding to seismogenic depths and in pre‐existing extremely smooth interfaces due to identical tensile cracking processes at these conditions. This is Paper 1 (of two companion papers) which discusses the fan theory and extreme ruptures in experiments on extremely smooth interfaces. Paper 2 entitled “Fan‐hinged shear instead of frictional stick‐slip as the main and most dangerous mechanism of natural, induced and volcanic earthquakes in the earth's crust” considers extreme ruptures in intact rocks. Further study of this subject is a major challenge for deep underground science, earthquake and fracture mechanics, physics, and tribology.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3