Damage evolution of surrounding sandstone rock under charging–discharging cyclic loading in the natural gas storage of abandoned mines based on the discrete element method

Author:

Ma Zhanguo12,Sun Junyu1ORCID,Gong Peng1,Oh Erwin3,Hu Jun1,Zhang Ruichong4

Affiliation:

1. School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China

2. State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering China University of Mining and Technology Xuzhou China

3. School of Engineering and Built Environment Griffith University Gold Coast Australia

4. Department of Mining Engineering Colorado School of Mines Golden USA

Abstract

AbstractGas storage in abandoned mines is one way to reuse waste space resources. The surrounding rock of gas storage reservoirs in underground roadways undergoes damage and deformation under the cyclic loading of gas charging and discharging, which can pose a risk to the safety of the reservoirs. This study establishes a true triaxial numerical model of rock mass with the discrete element method (DEM) and explores the crack evolution of surrounding rock of underground gas storage during cyclic loading and unloading. Also, a damage evolution model in numerical analysis considering residual deformation is developed to explain the experimental results. As was revealed, cyclic loading and unloading resulted in fatigue damage in the specimen and caused strength deterioration of the specimen. During the loading process, the uniformly distributed force chains of the rock mass redistributed, evolving gradually to mostly transverse force chains. This contributed to the appearance of blank areas in the force chains when through cracks appear. The ratio of tensile cracks to shear cracks gradually decreases and finally stabilizes at 7:1. The damage evolution model considering residual strain can be mutually verified with the numerical simulation results. Based on the DEM model, it was found that there was a certain threshold of confining pressure. When the confining pressure exceeded 30 MPa, the deformation to ductility of sandstone samples began to accelerate, with a greater residual strength. This study provides a theoretical basis for analyzing the long‐term mechanical behavior of surrounding rock of gas storage in abandoned mines.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3