Energy‐based analysis of seismic damage mechanism of multi‐anchor piles in tunnel crossing landslide area

Author:

Wei Hong1,Wu Honggang2,Ren Guojun1,Tang Lin1,Feng Kang3

Affiliation:

1. College of Resource and Environment Engineering Guizhou University Guiyang China

2. China Northwest Research Institute Co. Ltd. of CREC Lanzhou China

3. College of Civil Engineering and Architecture Southwest University of Science and Technology Mianyang China

Abstract

AbstractTo study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake, the damping performance of multi‐anchor piles was discussed. The energy dissipation springs were used as the optimization device of the anchor head to carry out the shaking table comparison test on the reinforced slope. The Hilbert spectrum and Hilbert marginal spectrum were proposed to analyze the seismic damage mechanism of the multi‐anchor piles, and the peak Fourier spectrum amplitude (PFSA) was used to verify the effectiveness of the method. The results show that the seismic energy is concentrated in the high‐frequency component (30–40 Hz) of the Hilbert spectrum and the low‐frequency component (12–30 Hz) of the marginal spectrum. This indicates that they can be combined with the distribution law of the PFSA to identify the overall and local dynamic responses of the multi‐anchored piles, respectively. The stretchable deformation of the energy‐dissipation springs improves the coordination of the multi‐anchor piles, resulting in better pile integrity. The damage mechanism of the multi‐anchor piles is elucidated based on the energy method: local damage at the top and middle areas of the multi‐anchor piles is mainly caused by the low‐frequency component (12–30 Hz) of the marginal spectrum under the action of 0.15g and 0.20g seismic intensities. As the seismic intensity increases to 0.30g, the dynamic response of the slope is further amplified by the high‐frequency component (30–40 Hz) of the Hilbert energy spectrum, which leads to the overall damage of the multi‐anchor piles.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3