Performance evaluation of rock fragmentation prediction based on RF‐BOA, AdaBoost‐BOA, GBoost‐BOA, and ERT‐BOA hybrid models

Author:

Zhao Junjie1,Li Diyuan1,Zhou Jian1,Armaghani Danial J.2,Zhou Aohui1

Affiliation:

1. School of Resources and Safety Engineering Central South University Changsha China

2. School of Civil and Environmental Engineering University of Technology Sydney Ultimo New South Wales Australia

Abstract

AbstractRock fragmentation is an important indicator for assessing the quality of blasting operations. However, accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties. For this reason, optimized by the Bayesian optimization algorithm (BOA), four hybrid machine learning models, including random forest, adaptive boosting, gradient boosting, and extremely randomized trees, were developed in this study. A total of 102 data sets with seven input parameters (spacing‐to‐burden ratio, hole depth‐to‐burden ratio, burden‐to‐hole diameter ratio, stemming length‐to‐burden ratio, powder factor, in situ block size, and elastic modulus) and one output parameter (rock fragment mean size, X50) were adopted to train and validate the predictive models. The root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of determination () were used as the evaluation metrics. The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models. The hybrid model consisting of gradient boosting and BOA (GBoost‐BOA) achieved the best prediction results compared with the other hybrid models, with the highest R2 value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02, respectively. Furthermore, sensitivity analysis was carried out to study the effects of input variables on rock fragmentation. In situ block size (XB), elastic modulus (E), and stemming length‐to‐burden ratio (T/B) were set as the main influencing factors. The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3