A case study on the stability of a big underground powerhouse cavern cut by an interlayer shear zone in the China Baihetan hydropower plant

Author:

Zou Lifang1,Meng Guotao23,Wu Jiayao23,Fu Wei4,Chu Weijiang23,Xu Weiya5

Affiliation:

1. School of Earth Sciences and Engineering Hohai University Nanjing China

2. PowerChina Huadong Engineering Corporation Hangzhou China

3. HydroChina Itasca Research and Development Center Hangzhou China

4. Itasca Consulting Group, Inc. Minneapolis Minnesota USA

5. College of Civil and Transportation Engineering Hohai University Nanjing China

Abstract

AbstractThe big underground powerhouse cavern of the China Baihetan hydropower plant is 438 m long, 34 m wide, and 88.7 m high. It is cut by a weak interlayer shear zone and its high sidewall poses a huge stability problem. This paper reports our successful solution of this problem through numerical simulations and a replacement‐tunnel scheme in the detailed design stage and close site monitoring in the excavation stage. Particularly, in the detail design stage, mechanical parameters of the shear zone were carefully determined through laboratory experiments and site tests. Then, deformation of the surrounding rocks and the shear zone under high in situ stress conditions was predicted using 3 Dimensional Distinct Element Code (3DEC). Subsequently, a replacement‐tunnel scheme was proposed for the treatment on the shear zone to prevent severe unloading relaxation of surrounding rocks. In the construction period, excavation responses were closely monitored on deformations of surrounding rocks and the shear zone. The effect of local cracking in the replacement tunnels on sidewall stability was evaluated using the strength reduction method. These monitoring results were compared with the predicted numerical simulation in the detailed design stage. It is found that the shear zone greatly modified the deformation mode of the cavern surrounding rocks. Without any treatment, rock mass deformation on the downstream sidewall was larger than 125 mm and the shearing deformation of the shear zone was 60–70 mm. These preset replacement tunnels can reduce not only the unloading and relaxation of rock masses but also the maximum shearing deformation of the shear zone by 10–20 mm. The predictions by numerical simulation were in good agreement with the monitoring results. The proposed tunnel‐replacement scheme can not only restrain the shear zone deformation but also enhance the safety of surrounding rocks and concrete tunnels. This design procedure offers a good reference for interaction between a big underground cavern and a weak layer zone in the future.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3