Numerical study on local scour characteristics around submarine pipelines in the Yellow River Delta silty sandy soil under waves and currents

Author:

Yu Peng12ORCID,Hu Ruigeng3,Zhang Jike12,Yang Qi45,Zhao Jieru6,Cao Lei12,Zhu Chenghao6

Affiliation:

1. Key Laboratory of Geological Safety of Coastal Urban Underground Space Ministry of Natural Resources Qingdao China

2. Qingdao Geo‐Engineering Surveying Institute (Qingdao Geological Exploration Development Bureau) Qingdao China

3. Sinopec Petroleum Engineering Corporation Dongying China

4. State Key Laboratory of Hydroscience and Engineering Tsinghua University Beijing China

5. Department Civil and Environmental Engineering Politecnico di Milano Milan Italy

6. College of Environmental Science and Engineering Ocean University of China Qingdao China

Abstract

AbstractDue to their high reliability and cost‐efficiency, submarine pipelines are widely used in offshore oil and gas resource engineering. Due to the interaction of waves, currents, seabed, and pipeline structures, the soil around submarine pipelines is prone to local scour, severely affecting their operational safety. With the Yellow River Delta as the research area and based on the renormalized group (RNG) k‐ε turbulence model and Stokes fifth‐order wave theory, this study solves the Navier–Stokes (N–S) equation using the finite difference method. The volume of fluid (VOF) method is used to describe the fluid‐free surface, and a three‐dimensional numerical model of currents and waves–submarine pipeline–silty sandy seabed is established. The rationality of the numerical model is verified using a self‐built waveflow flume. On this basis, in this study, the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field, shear stress, and turbulence intensity is analyzed. The results indicate that (1) local scour around submarine pipelines can be divided into three stages: rapid scour, slow scour, and stable scour. The maximum scour depth occurs directly below the pipeline, and the shape of the scour pits is asymmetric. (2) As the water depth decreases and the pipeline suspension height increases, the scour becomes more intense. (3) When currents go through a pipeline, a clear stagnation point is formed in front of the pipeline, and the flow velocity is positively correlated with the depth of scour. This study can provide a valuable reference for the protection of submarine pipelines in this area.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3