Development of machine learning models for fractional flow reserve prediction in angiographically intermediate coronary lesions

Author:

Lombardi Marco1ORCID,Vergallo Rocco23,Costantino Andrea4,Bianchini Francesco1ORCID,Kakuta Tsunekazu5ORCID,Pawlowski Tomasz6ORCID,Leone Antonio M.1ORCID,Sardella Gennaro7,Agostoni Pierfrancesco8ORCID,Hill Jonathan M.9,De Maria Giovanni L.10ORCID,Banning Adrian P.10,Roleder Tomasz11ORCID,Belkacemi Anouar12,Trani Carlo1ORCID,Burzotta Francesco1

Affiliation:

1. Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica Sacro Cuore Rome Italy

2. Department of Internal Medicine and Medical Specialties (DIMI) Università di Genova Genova Italy

3. Interventional Cardiology Unit, Cardiothoracic and Vascular Department (DICATOV) IRCCS Ospedale Policlinico San Martino Genova Italy

4. Department of Biomedical Sciences Humanitas University Milan Italy

5. Department of Cardiovascular Medicine Tsuchiura Kyodo General Hospital Tsuchiura Japan

6. Department of Cardiology Central Hospital of Internal Affairs and Administration Ministry, Postgraduate Medical Education Centre Warsaw Poland

7. Department of Cardiovascular Sciences, Policlinico Umberto I Sapienza University of Rome Rome Italy

8. HartCentrum, Ziekenhuis Netwerk Antwerpen (ZNA) Middelheim Antwerp Belgium

9. Royal Brompton Hospital London UK

10. Oxford Heart Centre, John Radcliffe Hospital Oxford University Hospitals, NHS Foundation Trust Oxford UK

11. Department of Cardiology Hospital Wroclaw Wroclaw Poland

12. Department of Cardiology AZ West Hospital Veurne Belgium

Abstract

AbstractBackgroundFractional flow reserve (FFR) represents the gold standard in guiding the decision to proceed or not with coronary revascularization of angiographically intermediate coronary lesion (AICL). Optical coherence tomography (OCT) allows to carefully characterize coronary plaque morphology and lumen dimensions.ObjectivesWe sought to develop machine learning (ML) models based on clinical, angiographic and OCT variables for predicting FFR.MethodsData from a multicenter, international, pooled analysis of individual patient's level data from published studies assessing FFR and OCT on the same target AICL were collected through a dedicated database to train (n = 351) and validate (n = 151) six two‐class supervised ML models employing 25 clinical, angiographic and OCT variables.ResultsA total of 502 coronary lesions in 489 patients were included. The AUC of the six ML models ranged from 0.71 to 0.78, whereas the measured F1 score was from 0.70 to 0.75. The ML algorithms showed moderate sensitivity (range: 0.68–0.77) and specificity (range: 0.59–0.69) in detecting patients with a positive or negative FFR. In the sensitivity analysis, using 0.75 as FFR cut‐off, we found a higher AUC (0.78–0.86) and a similar F1 score (range: 0.63–0.76). Specifically, the six ML models showed a higher specificity (0.71–0.84), with a similar sensitivity (0.58–0.80) with respect to 0.80 cut‐off.ConclusionsML algorithms derived from clinical, angiographic, and OCT parameters can identify patients with a positive or negative FFR.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3