Energy efficient data dissemination in wireless sensor network enabled IoT using domain‐adaptive message passing graph neural network

Author:

Shiny G. Susan1ORCID,Ram R. Saravana2,J Rajeshkumar3,Muthalakshmi M.4

Affiliation:

1. Associate Professor, Department of Information Technology Sethu Institute of Technology Thoothukudi Tamil Nadu India

2. Assistant Professor (Sr. Grade), Department of Electronics and Communication Engineering Anna University Regional Campus Madurai Tamil Nadu India

3. Assistant Professor, Department of Computer Science and Engineering R.L. Jalappa Institute of Technology Doddaballapur, Bengaluru Rural District Karnataka India

4. Assistant Professor, Department of Bio Medical Engineering Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Chennai Tamil Nadu India

Abstract

SummaryIn the past few years, restricted wireless sensor networks (WSNs) enabled the Internet of Things (IoT) have attracted significant attention and expansion to enhance service delivery and resource efficiency. Dissemination is a service offered by WSN that uses radio transmission and over‐the‐air programming for updating the deployed sensor nodes through online. The centralized data dissemination methods are replaced by the distributed approaches because they affect the drawbacks of a single point of failure, no scalability, and insecurity. Therefore, an Energy Efficient Protocol for Data Dissemination in Wireless Sensor network‐enabled IoT using Domain‐Adaptive Message Passing Graph Neural Network (EEP‐WSN‐IoT‐DMPGNN) is proposed in this paper. The nodes are formed as clusters utilizing the Deep Fuzzy Curriculum Clustering (DFCC) technique that rewards nodes belonging to a given cluster. By using the Crayfish Optimization Algorithm (COA), the Cluster Head (CH) selection optimally chose the ideal CH and satisfies the multiple objective functions, such as energy, delay, traffic density, and distance. Afterward, domain‐adaptive Message Passing Graph Neural Network (DMPGNN) based routing protocol is developed, the input given to the routing protocol includes a sink, action history, future node, and maximum‐distance node, which attains enhanced data transfer in the chosen path. The proposed technique attains a lower no. of dead nodes, lower energy consumption, and higher Network Lifetime while analyzed with existing techniques, such as routing technique depending on deep learning for effectual data transmission in 5G WSN communication (DL‐RPDT‐WSN), Reinforcement‐Learning base energy effectual optimized routing protocol in WSN (RL‐EERP‐WSN), and Energy‐efficient intellectual routing method for IoT‐enabled WSN (EIR‐IoT‐WSN), respectively.

Publisher

Wiley

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3