Predicting the spatial expansion of an animal population with presence‐only data

Author:

Barton Owain1ORCID,Healey John R.1,Cordes Line S.2,Davies Andrew J.3,Shannon Graeme1ORCID

Affiliation:

1. School of Natural Sciences Bangor University Bangor UK

2. Norwegian Institute for Nature Research Trondheim Norway

3. Department of Biological Sciences University of Rhode Island Kingston Rhode Island USA

Abstract

AbstractPredictive models can improve the efficiency of wildlife management by guiding actions at the local, landscape and regional scales. In recent decades, a vast range of modelling techniques have been developed to predict species distributions and patterns of population spread. However, data limitations often constrain the precision and biological realism of models, which make them less useful for supporting decision‐making. Complex models can also be challenging to evaluate, and the results are often difficult to interpret for wildlife management practitioners. There is therefore a need to develop techniques that are appropriately robust, but also accessible to a range of end users. We developed a hybrid species distribution model that utilises commonly available presence‐only distribution data and minimal demographic information to predict the spread of roe deer (Capreolus caprelous) in Great Britain. We take a novel approach to representing the environment in the model by constraining the size of habitat patches to the home‐range area of an individual. Population dynamics are then simplified to a set of generic rules describing patch occupancy. The model is constructed and evaluated using data from a populated region (England and Scotland) and applied to predict regional‐scale patterns of spread in a novel region (Wales). It is used to forecast the relative timing of colonisation events and identify important areas for targeted surveillance and management. The study demonstrates the utility of presence‐only data for predicting the spread of animal species and describes a method of reducing model complexity while retaining important environmental detail and biological realism. Our modelling approach provides a much‐needed opportunity for users without specialist expertise in computer coding to leverage limited data and make robust, easily interpretable predictions of spread to inform proactive population management.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3