Marine heatwaves modulate the genotypic and physiological responses of reef‐building corals to subsequent heat stress

Author:

Brown Kristen T.12ORCID,Genin Amatzia3ORCID,Mello‐Athayde Matheus A.1ORCID,Bergstrom Ellie4ORCID,Campili Adriana5,Chai Aaron6,Dove Sophie G.1ORCID,Ho Maureen7ORCID,Rowell Devin1,Sampayo Eugenia M.1ORCID,Radice Veronica Z.18ORCID

Affiliation:

1. School of Biological Sciences University of Queensland St Lucia Queensland Australia

2. Department of Biology University of Pennsylvania Philadelphia Pennsylvania USA

3. The Interuniversity Institute for Marine Sciences of Eilat The Hebrew University of Jerusalem Eilat Israel

4. CarbonDrop San Carlos California USA

5. Australian Institute of Marine Science Townsville Mail Centre Townsville Queensland Australia

6. Faculty of Science and Engineering Southern Cross University East Lismore New South Wales Australia

7. Cawthron Institute Nelson New Zealand

8. Department of Biological Sciences Old Dominion University Norfolk Virginia USA

Abstract

AbstractBack‐to‐back marine heatwaves in 2016 and 2017 resulted in severe coral bleaching and mortality across the Great Barrier Reef (GBR). Encouragingly, some corals that survived these events exhibit increased bleaching resistance and may represent thermally tolerant populations that can better cope with ocean warming. Using the GBR as a natural laboratory, we investigated whether a history of minimal (Heron Island) or severe (Lizard Island) coral bleaching in 2016 and 2017 equates to stress tolerance in a successive heatwave (2020). We examined the genetic diversity, physiological performance, and trophic plasticity of juvenile (<10 cm) and adult (>25 cm) corals of two common genera (Pocillopora and Stylophora). Despite enduring greater cumulative heat stress (6.3°C week−1 vs. 5.6°C week−1), corals that experienced the third marine heatwave in 5 years (Lizard) exhibited twice as high survival and visual bleaching thresholds compared to corals that had not experienced significant bleaching in >10 years (Heron). Surprisingly, only one shared host–Symbiodiniaceae association was uncovered between locations (Stylophora pistillataCladocopium “C8 group”) and there was no genetic overlap in PocilloporaCladocopium partnerships, suggesting turnover in species composition from recent marine heatwaves. Corals within the species complex Pocillopora that survived the 2016 and 2017 marine heatwaves at Lizard Island were the most resilient, exhibiting three times greater calcification rates than conspecifics at Heron Island. Further, surviving corals (Lizard) had distinct isotopic niches, lower host carbon, and greater host protein, while conspecifics that had not experienced recent bleaching (Heron) had two times greater symbiont carbon content, suggesting divergent trophic strategies that influenced survival (i.e., greater reliance on heterotrophy vs. symbiont autotrophy, respectively). Ultimately, while corals may experience less bleaching and survive repeated thermal stress events, species‐specific trade‐offs do occur, leaving open many questions related to the long‐term health and recovery of coral reef ecosystems in the face of intensifying marine heatwaves.

Funder

Australian Research Council

National Geographic Society

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3