Parental exposure to heat waves improves offspring reproductive investment in Tetranychus urticae (Acari: Tetranychidae), but not in its predator, Phytoseiulus persimilis (Acari: Phytoseiidae)

Author:

Tscholl Thomas1ORCID,Nachman Gösta2,Spangl Bernhard3ORCID,Scalmani Ida1,Walzer Andreas1ORCID

Affiliation:

1. Department of Crop Sciences, Institute of Plant Protection University of Natural Resources and Life Sciences, Vienna Vienna Austria

2. Department of Biology University of Copenhagen Copenhagen Ø Denmark

3. Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics University of Natural Resources and Life Sciences, Vienna Vienna Austria

Abstract

AbstractThe more frequent and intense occurrence of heat waves is a challenge for arthropods because their unpredictable incidence requires fast adaptations by the exposed individuals. Phenotypic plasticity within and across generations might be a solution to cope with the detrimental effects of heat waves, especially for fast‐developing, small arthropods with limited dispersal abilities. Therefore, we studied whether severe heat may affect the reproduction of a pest species, the spider mite Tetranychus urticae, and its counterpart, the predatory mite Phytoseiulus persimilis. Single offspring females with different parental thermal origins (reared under mild or extreme heat waves) of both species were exposed to mild or extreme heat waves on bean leaves over 10 days, and the oviposition, egg sizes, survival, and escape behavior of the females were evaluated daily. The total losses of predators mainly via escapers were very high compared to prey, which makes a separation between selective and plastic effects on shifted reproductive traits impossible. Predator females laid smaller eggs, while their consumption and oviposition rates were unaffected during extreme heat waves. In comparison, larger prey females fed more and produced more, but smaller, eggs due to within‐ and trans‐generational effects. These advantages for the prey in comparison to its predator when exposed to extreme heat waves during the reproductive phase support the trophic sensitivity hypothesis: higher trophic levels (i.e., the predator) are more sensitive to thermal stress than lower trophic levels (i.e., the prey). Furthermore, the species‐specific responses may reflect their lifestyles. The proactive and mobile predator should be selected for behavioral thermoregulation under heat waves via spatiotemporal avoidance of heat‐exposed locations rather than relying on physiological adaptations in contrast to the more sessile prey. Whether these findings also influence predator–prey interactions and their population dynamics under heat waves remains an open question.

Funder

Austrian Science Fund

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3