Ontogeny of color development in two green–brown polymorphic grasshopper species

Author:

Varma Mahendra12ORCID,Winter Gabe1ORCID,Rowland Hannah M.2ORCID,Schielzeth Holger1ORCID

Affiliation:

1. Population Ecology Group, Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany

2. Max Planck Institute for Chemical Ecology Jena Germany

Abstract

AbstractMany insects, including several orthopterans, undergo dramatic changes in body coloration during ontogeny. This variation is particularly intriguing in gomphocerine grasshoppers, where the green and brown morphs appear to be genetically determined (Schielzeth & Dieker, 2020, BMC Evolutionary Biology, 20, 63; Winter et al., 2021, Heredity, 127, 66). A better understanding of how these color morphs develop during ontogeny can provide valuable insights into the evolution and ecology of such a widespread color polymorphism. Here, we focus on the color development of two green–brown polymorphic species, the club‐legged grasshopper Gomphocerus sibiricus and the steppe grasshopper Chorthippus dorsatus. By following the color development of individuals from hatching to adulthood, we found that color morph differences begin to develop during the second nymphal stage, are clearly defined by the third nymphal stage, and remain stable throughout the life of an individual. Interestingly, we also observed that shed skins of late nymphal stages are identifiable by color morphs based on their yellowish coloration, rather than the green that marks green body parts. Furthermore, by assessing how these colors are perceived by different visual systems, we found that certain potential predators can chromatically discriminate between morphs, while others may not. These results suggest that the putative genes controlling color morph are active during the early stages of ontogeny, and that green color is likely composed of two components, one present in the cuticle and one not. In addition, the effectiveness of camouflage appears to vary depending on the specific predator involved.

Funder

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3