King Rail (Rallus elegans) presence in the Midwestern United States is predicted by local‐scale factors and avian community

Author:

Kane Michelle E.1,Brewer Dustin E.1,Gehring Thomas M.1ORCID,Shirkey Brendan T.2,Pangle Kevin L.1,Uzarski Donald G.1,Picciuto Michael A.2,Simpson John W.2

Affiliation:

1. Department of Biology, Institute for Great Lakes Research Central Michigan University Mount Pleasant Michigan USA

2. Winous Point Marsh Conservancy Port Clinton Ohio USA

Abstract

AbstractThe King Rail (Rallus elegans) is a wetland dependent species of conservation concern. Our objective was to gain a better understanding of the breeding habitat associations of King Rails in the Midwestern United States and the relationship of this species to other obligate marsh birds using occupancy and MaxEnt models. To collect data pertaining to occupancy, we placed trail cameras at 50 random points in coastal wetlands in the western Lake Erie basin where calls of King Rails were continuously broadcast at night. Data pertaining to other marsh bird species were collected via call‐broadcast surveys and camera surveys at each sample point. For MaxEnt modeling, we obtained presence data for King Rails and other obligate marsh birds from eBird and habitat data from GIS databases. Trail cameras and call‐broadcast surveys captured 10 detections of King Rails at nine sites, an 18% naive occupancy rate. King Rail occupancy was positively related to amount of interspersion, average water depth, and percent cover of emergent vegetation at local scales within a 5‐m radius. Our MaxEnt models indicated that, at a broader scale, the presence of other rail species such as the Sora (Porzana carolina) may be more important for predicting King Rail presence than other marsh birds or coarse wetland categories such as “emergent vegetation.” Our results could help wetland managers to predict where King Rails occur and to adapt management plans to incorporate King Rail conservation.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3