Temperature variation generates interspecific synchrony but spatial asynchrony in survival for freshwater fish communities

Author:

Pregler Kasey C.12ORCID,Lu Xinyi1,Valentine George P.13,Kim Seoghyun12ORCID,Kanno Yoichiro123ORCID

Affiliation:

1. Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA

2. Department of Forestry and Environmental Conservation Clemson University Clemson South Carolina USA

3. Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA

Abstract

AbstractIdentifying environmental drivers of demographic variation is key to predicting community‐level impacts in response to global change. Climate conditions can synchronize population trends and can occur both spatially for populations of the same species, and across multiple species within the same local community. The aim of this study was to investigate patterns of temporal variation in survival for freshwater fish communities in two geographically close but isolated sites and to understand the amount of variation accounted for by abiotic covariates including metrics of water temperature and stream flow. Using mark‐recapture data, we estimated bi‐monthly apparent survival in a Bayesian Cormack‐Jolly‐Seber framework. The model included random effects to quantify temporal variance to understand species synchrony with the rest of the fish community and between sites. Study species included bluehead chub (Nocomis leptocephalus), creek chub (Semotilus atromaculatus), and striped jumprock (Moxostoma rupiscartes) in the southeastern USA. Results showed that survival varied over time and periods of low survival were associated with higher mean water temperature. However, temporal patterns of survival differed among species and between sites, where survival was synchronous among species within a site but asynchronous between sites for the same species despite their spatial proximity. Study streams differed in summer thermal regimes, which resulted in contrasting summer survival patterns, suggesting sensitivity of these fishes to warming. We found that interspecific synchrony was greater than spatial synchrony, where regional drivers such as temperature may interact with local habitat leading to differences in survival patterns at fine spatial scales. Finally, these findings show that changes in the timing and magnitude of environmental conditions can be critical in limiting vital rates and that some populations may be more resilient to climate variation than others.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3