Deep learning method for predicting weekly anatomical changes in patients with nasopharyngeal carcinoma during radiotherapy

Author:

Yang Bining1,Liu Yuxiang1,Wei Ran1,Men Kuo1,Dai Jianrong1

Affiliation:

1. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

Abstract

AbstractBackgroundPatients may undergo anatomical changes during radiotherapy, leading to an underdosing of the target or overdosing of the organs at risk (OARs).PurposeThis study developed a deep‐learning method to predict the tumor response of patients with nasopharyngeal carcinoma (NPC) during treatment. This method can predict the anatomical changes of a patient.MethodsThe participants included 230 patients with NPC. The data included planning computed tomography (pCT) and routine cone‐beam CT (CBCT) images. The CBCT image quality was improved to the CT level using an advanced method. A long short‐term memory network‐generative adversarial network (LSTM‐GAN) is proposed, which can harness the forecasting ability of LSTM and the generation ability of GAN. Four models were trained to predict the anatomical changes that occurred in weeks 3–6 and named LSTM‐GAN‐week 3 to LSTM‐GAN‐week 6. The pCT and CBCT were used as input, and the tumor target volumes (TVs) and OARs were delineated on the predicted and real images (ground truth). Finally, the models were evaluated using contours and dosimetry parameters.ResultsThe proposed method predicted the anatomical changes, with a dice similarity coefficient above 0.94 and 0.90 for the TVs and surrounding OARs, respectively. The dosimetry parameters were close between the prediction and ground truth. The deviations in the prescription, minimum, and maximum doses of the tumor targets were below 0.5 Gy. For serial organs (brain stem and spinal cord), the deviations in the maximum dose were below 0.6 Gy. For parallel organs (bilateral parotid glands), the deviations in the mean dose were below 0.8 Gy.ConclusionThe proposed method can predict the tumor response to radiotherapy in the future such that adaptation can be scheduled on time. This study provides a proactive mechanism for planning adaptation, which can enable personalized treatment and save clinical time by anticipating and preparing for treatment strategy adjustments.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3