Metabolic sensor O-GlcNAcylation regulates megakaryopoiesis and thrombopoiesis through c-Myc stabilization and integrin perturbation

Author:

Luanpitpong Sudjit1ORCID,Poohadsuan Jirarat1,Klaihmon Phatchanat1,Kang Xing1,Tangkiettrakul Kantpitchar1,Issaragrisil Surapol123

Affiliation:

1. Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

2. Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

3. Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand

Abstract

Abstract Metabolic state of hematopoietic stem cells (HSCs) is an important regulator of self-renewal and lineage-specific differentiation. Posttranslational modification of proteins via O-GlcNAcylation is an ideal metabolic sensor, but how it contributes to megakaryopoiesis and thrombopoiesis remains unknown. Here, we reveal for the first time that cellular O-GlcNAcylation levels decline along the course of megakaryocyte (MK) differentiation from human-derived hematopoietic stem and progenitor cells (HSPCs). Inhibition of O-GlcNAc transferase (OGT) that catalyzes O-GlcNAcylation prolongedly decreases O-GlcNAcylation and induces the acquisition of CD34+CD41a+ MK-like progenitors and its progeny CD34−CD41a+/CD42b+ megakaryoblasts (MBs)/MKs from HSPCs, consequently resulting in increased CD41a+ and CD42b+ platelets. Using correlation and co-immunoprecipitation analyses, we further identify c-Myc as a direct downstream target of O-GlcNAcylation in MBs/MKs and provide compelling evidence on the regulation of platelets by novel O-GlcNAc/c-Myc axis. Our data indicate that O-GlcNAcylation posttranslationally regulates c-Myc stability by interfering with its ubiquitin-mediated proteasomal degradation. Depletion of c-Myc upon inhibition of OGT promotes platelet formation in part through the perturbation of cell adhesion molecules, that is, integrin-α4 and integrin-β7, as advised by gene ontology and enrichment analysis for RNA sequencing and validated herein. Together, our findings provide a novel basic knowledge on the regulatory role of O-GlcNAcylation in megakaryopoiesis and thrombopoiesis that could be important in understanding hematologic disorders whose etiology are related to impaired platelet production and may have clinical applications toward an ex vivo platelet production for transfusion.

Funder

Thailand Office of Commission on Higher Education

Thailand Research Fund/National Research Council of Thailand

National Research Council of Thailand

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3