Stepping beyond your comfort zone: Diffusion‐based network analytics for knowledge trajectory recommendation

Author:

Zhang Yi1ORCID,Wu Mengjia1ORCID,Zhang Guangquan1,Lu Jie1

Affiliation:

1. Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology University of Technology Sydney Sydney New South Wales Australia

Abstract

AbstractPredicting a researcher's knowledge trajectories beyond their current foci can leverage potential inter‐/cross‐/multi‐disciplinary interactions to achieve exploratory innovation. In this study, we present a method of diffusion‐based network analytics for knowledge trajectory recommendation. The method begins by constructing a heterogeneous bibliometric network consisting of a co‐topic layer and a co‐authorship layer. A novel link prediction approach with a diffusion strategy is then used to capture the interactions between social elements (e.g., collaboration) and knowledge elements (e.g., technological similarity) in the process of exploratory innovation. This diffusion strategy differentiates the interactions occurring among homogeneous and heterogeneous nodes in the heterogeneous bibliometric network and weights the strengths of these interactions. Two sets of experiments—one with a local dataset and the other with a global dataset—demonstrate that the proposed method is prior to 10 selected baselines in link prediction, recommender systems, and upstream graph representation learning. A case study recommending knowledge trajectories of information scientists with topical hierarchy and explainable mediators reveals the proposed method's reliability and potential practical uses in broad scenarios.

Funder

Australian Research Council

Publisher

Wiley

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3