Rees algebras and generalized depth‐like conditions in prime characteristic

Author:

Costantini Alessandra1,Maddox Kyle2,Miller Lance Edward3

Affiliation:

1. Department of Mathematics Oklahoma State University Stillwater Oklahoma USA

2. Department of Mathematics University of Kansas Lawrence Kansas USA

3. Department of Mathematical Sciences University of Arkansas Fayetteville Arkansas USA

Abstract

AbstractIn this paper, we address a question concerning nilpotent Frobenius actions on Rees algebras and associated graded rings. We prove a nilpotent analog of a theorem of Huneke for Cohen–Macaulay singularities. This is achieved by introducing a depth‐like invariant which captures as special cases Lyubeznik's F‐depth and the generalized F‐depth from Maddox–Miller and is related to the generalized depth with respect to an ideal. We also describe several properties of this new invariant and identify a class of regular elements for which weak F‐nilpotence deforms.

Publisher

Wiley

Subject

General Mathematics

Reference27 articles.

1. Local cohomology multiplicities in terms of étale cohomology

2. Cartier modules: Finiteness results

3. A.De Stefani J.Montaño andL.Núñez‐Betancourt Blowup algebras of determinantal ideals in prime characteristic arXiv preprint arXiv:2109.00592.

4. The Frobenius structure of local cohomology

5. Twenty-Four Hours of Local Cohomology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3