Weyl families of transformed boundary pairs

Author:

Juršėnas Rytis1

Affiliation:

1. Institute of Theoretical Physics and Astronomy Vilnius University Vilnius Lithuania

Abstract

AbstractLet be an isometric boundary pair associated with a closed symmetric linear relation T in a Krein space . Let be the Weyl family corresponding to . We cope with two main topics. First, since need not be (generalized) Nevanlinna, the characterization of the closure and the adjoint of a linear relation , for some , becomes a nontrivial task. Regarding as the (Shmul'yan) transform of induced by Γ, we give conditions for the equality in to hold and we compute the adjoint . As an application, we ask when the resolvent set of the main transform associated with a unitary boundary pair for is nonempty. Based on the criterion for the closeness of , we give a sufficient condition for the answer. From this result it follows, for example, that, if T is a standard linear relation in a Pontryagin space, then the Weyl family corresponding to a boundary relation Γ for is a generalized Nevanlinna family; a similar conclusion is already known if T is an operator. In the second topic, we characterize the transformed boundary pair with its Weyl family . The transformation scheme is either or with suitable linear relations V. Results in this direction include but are not limited to: a 1‐1 correspondence between and ; the formula for , for an ordinary boundary triple and a standard unitary operator V (first scheme); construction of a quasi boundary triple from an isometric boundary triple with and (second scheme, Hilbert space case).

Publisher

Wiley

Subject

General Mathematics

Reference53 articles.

1. Invariant Subspaces for Pairs of Projections

2. Standard symmetric operators in Pontryagin spaces: a generalized von Neumann formula and minimality of boundary coefficients

3. Linear operators in spaces with an indefinite metric and their applications;Azizov T.;Itogi nauki i mech. Ser. Mat. (in Russian),1979

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3