A compact embedding result and its applications to a nonlocal Schrödinger equation

Author:

Gu Guangze12ORCID,Zhang Xu13,Zhao Fukun12

Affiliation:

1. Department of Mathematics Yunnan Normal University Kunming China

2. Yunnan Key Laboratory of Modern Analytical Mathematics and Applications Kunming China

3. Department of Mathematics Wuhan University of Technology Wuhan China

Abstract

AbstractCompactness is a fundamental issue in nonlinear analysis. Assume and with , we consider a subspace of , which is the space of invariant functions corresponding to a subgroup G of , where is a kind of function spaces including fractional Sobolev spaces . We show that the embeddings are compact for provided Ω is compatible with G, where is the fractional Sobolev critical exponent. Moreover, the existence and multiplicity of radial and nonradial solutions were obtained of the following nonlocal Schrödinger equation: where is an integro‐differential operator has order 2s and can be given by and the kernel K satisfies the following properties: there is and such that for any ; , where .

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3