Affiliation:
1. Mathematisches Institut Georg‐August‐Universität Göttingen Niedersachsen Germany
Abstract
AbstractWe show that on every elliptic K3 surface there are rational curves such that , that is, of unbounded arithmetic genus. Moreover, we show that the union of the lifts of these curves to is dense in the Zariski topology. As an application, we give a simple proof of a theorem of Kobayashi in the elliptic case, that is, there are no globally defined symmetric differential forms.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rational curves and Seshadri constants on Enriques surfaces;Proceedings of the American Mathematical Society;2024-06-12