Weighted estimates for square functions associated with operators

Author:

Wen Yongming1ORCID,Shen Qinrui1,Sun Junjun1

Affiliation:

1. School of Mathematics and Statistics Minnan Normal University Zhangzhou China

Abstract

AbstractLet L be a non‐negative self‐adjoint operator on . Suppose that the kernels of the analytic semigroup satisfy the upper bound related to a critical function ρ but without any assumptions of smooth conditions on spacial variables. In this paper, we consider the weighted inequalities for square functions associated with L, which include the vertical square functions, the conical square functions and the Littlewood–Paley g‐functions. A new bump condition related to the critical function is given for the two‐weighted boundedness of square functions associated with L. Besides, we also prove the weighted inequalities for square functions associated with L on weighted variable Lebesgue spaces with new classes of weights considered in [5]. As applications, our results can be applied to magnetic Schrödinger operator, Laguerre operators.

Funder

Department of Education, Fujian Province

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3