On the linearization of infinite‐dimensional random dynamical systems

Author:

Backes Lucas1,Dragičević Davor2

Affiliation:

1. Departamento de Matemática Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil

2. Faculty of Mathematics University of Rijeka Rijeka Croatia

Abstract

AbstractWe present a new version of the Grobman–Hartman's linearization theorem for random dynamics. Our result holds for infinite‐dimensional systems whose linear part is not necessarily invertible. In addition, by adding some restrictions on the nonlinear perturbations, we do not require for the linear part to be nonuniformly hyperbolic in the sense of Pesin but rather (besides requiring the existence of stable and unstable directions) allow for the existence of a third (central) direction on which we do not prescribe any behavior for the dynamics. Moreover, under some additional nonuniform growth condition, we prove that the conjugacies given by the linearization procedure are Hölder continuous when restricted to bounded subsets of the space.

Funder

Hrvatska Zaklada za Znanost

Publisher

Wiley

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3