Some remarks on the Kp,1$\mathcal {K}_{p,1}$ theorem

Author:

Kim Yeongrak12,Moon Hyunsuk3,Park Euisung4

Affiliation:

1. Department of Mathematics Pusan National University Busan Republic of Korea

2. Institute of Mathematical Science Pusan National University Busan Republic of Korea

3. Department of Mathematics Korea Institute for Advanced Study Seoul Republic of Korea

4. Department of Mathematics Korea University Seoul Republic of Korea

Abstract

AbstractLet be a non‐degenerate projective irreducible variety of dimension , degree , and codimension over an algebraically closed field of characteristic 0. Let be the th graded Betti number of . Green proved the celebrating ‐theorem about the vanishing of for high values for and potential examples of nonvanishing graded Betti numbers. Later, Nagel–Pitteloud and Brodmann–Schenzel classified varieties with nonvanishing . It is clear that when there is an ‐dimensional variety of minimal degree containing , however, this is not always the case as seen in the example of the triple Veronese surface in .In this paper, we completely classify varieties with nonvanishing such that does not lie on an ‐dimensional variety of minimal degree. They are exactly cones over smooth del Pezzo varieties, whose Picard number is .

Funder

National Research Foundation of Korea

Korea Institute for Advanced Study

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3