Classical solutions to the one‐dimensional logarithmic diffusion equation with nonlinear Robin boundary conditions

Author:

Cortissoz Jean C.1,Reyes César2

Affiliation:

1. Department of Mathematics Universidad de los Andes Bogotá DC Colombia

2. Department of Mathematics Universidad Manuela Beltrán Bogotá DC Colombia

Abstract

AbstractIn this paper, we investigate the behavior of classical solutions to the one‐dimensional (1D) logarithmic diffusion equation with nonlinear Robin boundary conditions, namely, where γ is a constant. Let u0 > 0 be a smooth function defined on [ − l, l], and which satisfies the compatibility condition We show that for γ > 0, classical solutions to the logarithmic diffusion equation above with initial data u0 are global and blow‐up in infinite time, and that for p > 2 there is finite time blow‐up. Also, we show that in the case of γ < 0, , solutions to the logarithmic diffusion equation with initial data u0 are global and blow‐down in infinite time, but if p ⩽ 1 there is finite time blow‐down. For some of the cases mentioned above, and some particular families of examples, we provide blow‐up rates and blow‐down rates along sequences of times. Our approach is based on studying the Ricci flow on a cylinder endowed with a ‐symmetric metric, and some comparison arguments. Then, we bring our ideas full circle by proving a new long time existence result for the Ricci flow on a cylinder without any symmetry assumption. Finally, we show a blow‐down result for the logarithmic diffusion equation on a disc.

Publisher

Wiley

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3