Affiliation:
1. Department of Mathematics and RIRCM Kyungpook National University Daegu South Korea
Abstract
AbstractFirst, we introduce a new notion of pseudo‐anti commuting for real hypersurfaces in the complex quadric and give a complete classification of Hopf pseudo‐Ricci–Yamabe soliton real hypersurfaces in the complex quadric . Next as an application we obtain a classification of gradient pseudo‐Ricci–Yamabe solitons on Hopf real hypersurfaces in .
Funder
National Research Foundation of Korea
Reference60 articles.
1. Classics Math;Besse A. L.,2008
2. Some results on almost η$\eta$‐Ricci–Bourguignon solitons;Blaga A. M.;J. Geom. Phys.,2021
3. Une stratification de l'espace des structures Riemanniennes;Bourguignon J.‐P.;Compos. Math.,1975
4. Lecture Notes in Math;Bourguignon J.‐P.,1981
5. The Ricci–Bourguignon flow;Catino G.;Pacific J. Math.,2017