The rational cuspidal subgroup of J0(p2M)$J_0(p^2M)$ with M squarefree

Author:

Guo Jia‐Wei1,Yang Yifan12,Yoo Hwajong3,Yu Myungjun4

Affiliation:

1. Department of Mathematics National Taiwan University Taipei Taiwan

2. National Center for Theoretical Science Taipei Taiwan

3. College of Liberal Studies and Research Institute of Mathematics Seoul National University Seoul South Korea

4. Department of Mathematics Yonsei University Seoul South Korea

Abstract

AbstractFor a positive integer N, let be the modular curve over and its Jacobian variety. We prove that the rational cuspidal subgroup of is equal to the rational cuspidal divisor class group of when for any prime p and any squarefree integer M. To achieve this, we show that all modular units on can be written as products of certain functions , which are constructed from generalized Dedekind eta functions. Also, we determine the necessary and sufficient conditions for such products to be modular units on under a mild assumption.

Funder

Seoul National University

Korea Institute for Advanced Study

Ministry of Science and Technology, Taiwan

National Research Foundation of Korea

Publisher

Wiley

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The rational torsion subgroup of J0(N);Advances in Mathematics;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3