Affiliation:
1. Department of Mathematics and Computer Science Saarland University Saarbrücken Germany
2. Centre de Mathématiques Laurent Schwartz, CNRS (UMR 7640), École Polytechnique Palaiseau France
Abstract
AbstractIn this note, we extend the scope of our previous work joint with Bonnafoux, Kattler, Niño, Sedano‐Mendoza, Valdez, and Weitze‐Schmithüsen by showing the arithmeticity of the Kontsevich–Zorich monodromies of infinite families of square‐tiled surfaces of genera four, five, and six.
Funder
Deutsche Forschungsgemeinschaft
Reference10 articles.
1. E.Bonnafoux M.Kany P.Kattler C.Matheus R.Ninõ M.Sedano‐Mendoza F.Valdez andG.Weitze‐Schmithüsen Arithmeticity of the Kontsevich–Zorich monodromies of certain families of square‐tiled surfaces (2022). arxiv:https://arxiv.org/abs/2206.06595.
2. S.Filip Translation surfaces: dynamics and Hodge theory(2022).https://math.uchicago.edu/~sfilip/public_files/surf_surv.pdf.
3. On the Nature of the Roots of a Quartic Equation
4. Diophantine Geometry
5. The strong symmetric genus of the hyperoctahedral groups;Jackson M.;J. Group Theory,2004