A singular Liouville equation on planar domains

Author:

Figueiredo Giovany M.1,Montenegro Marcelo2,Stapenhorst Matheus F.2

Affiliation:

1. Departamento de Matemática Universidade de Brasília, Campus Darcy Ribeiro, Brasília Distrito Federal Brazil

2. Departamento de Matemática Universidade Estadual de Campinas IMECC Rua Sérgio Buarque de Holanda Campinas São Paulo Brasil

Abstract

AbstractWe show the existence of a solution for an equation where the nonlinearity is logarithmically singular at the origin, namely, in with Dirichlet boundary condition. The function f has exponential growth, which can be subcritical or critical with respect to the Trudinger–Moser inequality. We study the energy functional corresponding to the perturbed equation , where is well defined at 0 and approximates . We show that has a critical point in , which converges to a legitimate nontrivial nonnegative solution of the original problem as . We also investigate the problem with replaced by , when the parameter is sufficiently large.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

Subject

General Mathematics

Reference45 articles.

1. Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n‐Laplacian;Adimurthi;Ann. Sc. Norm. Super. Pisa, Cl. Sci.,1990

2. Multiplicity results for semilinear elliptic equations in a bounded domain of R2$\mathbb {R}^2$ involving critical exponent;Adimurthi;Ann. Sc. Norm. Super. Pisa, Cl. Sci.,1990

3. Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth inR2

4. Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems

5. A new Trudinger–Moser type inequality and an application to some elliptic equation with doubly exponential nonlinearity in the whole space $$ {\mathbb {R}}^2 $$

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3