On singular generalizations of the Singer–Hopf conjecture

Author:

Maxim Laurenţiu1ORCID

Affiliation:

1. Department of Mathematics University of Wisconsin‐Madison Madison WI USA

Abstract

AbstractThe Singer–Hopf conjecture predicts the sign of the topological Euler characteristic of a closed aspherical manifold. In this note, we propose singular generalizations of the Singer–Hopf conjecture, formulated in terms of the Euler–Mather characteristic, intersection homology Euler characteristic and, resp., virtual Euler characteristic of a closed irreducible subvariety of an aspherical complex projective manifold. We prove these new conjectures under the assumption that the cotangent bundle of the ambient variety is numerically effective (nef), or, more generally, when the ambient manifold admits a finite morphism to a complex projective manifold with a nef cotangent bundle. The main ingredients in the proof are the semi‐positivity properties of nef vector bundles together with a topological version of the Riemann–Roch theorem, proved by Kashiwara.

Funder

Simons Foundation

Publisher

Wiley

Subject

General Mathematics

Reference35 articles.

1. D.ArapuraandB.Wang Perverse sheaves on varieties with large fundamental groups arXiv:2109.07887.

2. M. F.Atiyah Elliptic operators discrete groups and von Neumann algebras In: Colloque Analyse et Topologie en l'Honneur de Henri Cartan (Orsay 1974) Astérisque 32‐33. Soc. Math. France 1976 pp.43–72.

3. Donaldson-Thomas type invariants via microlocal geometry

4. Complete intersection varieties with ample cotangent bundles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3