Micromorphological study of some Salsola species (Amaranthaceae) in Iran and its systematic significance using scanning electron microscopy

Author:

Amini Elham1ORCID,Sattarian Ali1,Nasrollahi Fatemeh23,Daneshvar Abolfazl1,Esmaeili Majid Mohammad4,Sani Leila Hamidzadeh1,Haghighi Sona1

Affiliation:

1. Department of Biology, Faculty of Sciences Gonbad Kavous University Gonbad Iran

2. Center of Environmental Research University of Qom Qom Iran

3. Department of Biology, Faculty of Sciences University of Qom Qom Iran

4. Department of Range and Watershed Management, Faculty of Agriculture and Natural Resources Gonbad Kavous University Gonbad Iran

Abstract

AbstractUsing scanning electron microscopy (SEM), six Salsola species from Iran were examined for their epidermis, seed, and fruit micromorphology. Among them were S. brachiata from section Heterotricha, S dendroides, S. incanescens, and S. orientalis from section Caroxylon, S. kali from section Kali, and S. turcomanica from section Physurus. Epidermal cells are divided into three types. There were diamond, irregular, and polygonal cells, as well as straight and undulated walls. Studied species of Salsola have smooth or sculptured fruit surfaces, and there are three main types of fruit surface ornamentation. There is a significant difference between these species based on the type of hair and density of the fruit. Seed shape and color have little systematic significance. The seed epidermis is composed of polygonal, elongated polygonal, irregular, and diamond cells. Although polygonal and irregular testa cells are most common, their size and shape can provide additional information and useful diagnostic characteristics at both specific and infraspecific levels. For taxonomic separation, the current study provides novel insights at micromorphological levels.Research Highlights This article reports halophyte are shown as models for adaptation to extreme habitats. These plants are placed among the ecological communities of xerophytes. Here, for the first time, the microstructural analysis of Salsola has been investigated. Additionally, it provides new insights into plant species' response to extreme conditions, as well as possible adaptation strategies at the micromorphological level.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3